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Abstract

A scaling law for the vibration response of rectangular plates along with a similarity requirement was derived and

validated with the experimental results in this study. The scaling law was derived from the governing equation of the

problem and was found to be exact after verifying with a closed-form solution. An experimental investigation was

conducted on several model and prototype specimens using an impact test method. The natural frequencies of the models

were substituted into the scaling law to obtain the scaling natural frequencies of the prototypes, which were then compared

with the measured natural frequencies. In the first part of the study, a total of nine aluminum rectangular plates with

various boundary conditions were tested for natural frequencies to determine the size effect on the accuracy of the scaling

law. From a total of 108 comparisons, the average percentage discrepancy of the scaling natural frequencies was 4.90%

with a standard deviation of 6.45%. Therefore, the scaling law is satisfactorily accurate for a pair of models and prototypes

of the same material but of different size. The other part of the study involved the investigation of the material’s effect on

the accuracy of the scaling law. The experimental results showed that, unlike theoretical verification, using model and

prototype systems with different materials resulted in an erroneous scaling natural frequency. The predicted natural

frequency was inaccurate in this case because the boundary conditions enforced by the supports on the models and

prototypes of different materials were significantly different. Consequently, the similarity requirement between the model

and prototype is violated in the case of this study. With an additional experiment, the scaling law was found to be

practically accurate for model–prototype pairs of different materials if their similitude requirements were fulfilled. The

possible sources of discrepancy of the scaling natural frequency include uncertainties of the experiment, incomplete

similarity of plate configurations and non-identical boundary conditions between the prototype and its model.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The similitude concept has been utilized in many engineering applications. The principle provides a
powerful tool for engineers and scientists to replicate the behavior of the prototype using an appropriate
scaled model. Similitude theory can be stated as [1]; ‘‘the sufficient and necessary condition of similitude
between two systems is that the mathematical model of the one be related by a bi-unique transformation to
that of the other.’’ For a prototype of interest, a scaled replica can be built to duplicate the behavior of the
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full-scale system. The experimental results on the model can be utilized to predict the behavior of the
prototype. The similitude concept is thus very useful, especially, for problems with either a complex domain or
complicated boundary conditions for which numerical solutions are not sufficiently accurate, if possible. If the
prototype is perfectly replicated, the experiment result on the model can be scaled to predict the behavior of
the prototype with sufficient accuracy.

The similitude theory has been applied to many problems in the field of structural engineering, including
vibration and buckling problems of plates. Simitses [2] applied similitude transformation to the bending,
buckling, and vibration of laminated plates. The derived scaling laws were successfully employed to the
problem with appropriate similarity requirements between model and prototype systems. Rezaeepazhand
et al. [3] demonstrated a procedure for deriving a scaling law for the frequency response of laminated plates.
Both Simitses and Rezaeepazhand derived scaling laws from the closed-form solutions of the problems.
Alternatively, scaling laws can be derived directly from the governing equation of the problems. In Refs. [4–6],
the authors derived the scaling laws for the vibration and buckling behavior of laminated rectangular plates.
In those studies, similitude transformation was applied to the governing equations of the problems directly.
Besides the scaling law, the similarity requirements were also obtained. An advantage of this approach is that
a solution of the governing equations is not required. The obtained scaling laws were verified with the
theoretical solution and found to be exact for complete similitude cases. Partial similitude cases were also
investigated and recommended. It was also found that the scaling laws were independent of boundary
conditions. This implies that, for a problem with complicated boundary conditions, the behavior of the
prototype can be predicted from the experimental results of the corresponding scaled model given that
the boundary conditions of both systems are identical. This concept is especially beneficial for problems where
the boundary conditions cannot be numerically modeled in the numerical solutions but can be built in the
scaled model.

In addition to a simple-supported rectangular thin plate, the similitude theory was moreover applied to the
elastically restrained flat plates subjected to dynamic loads by Wu [7]. The author showed that the geometric,
kinematic and dynamic similarities must be satisfied to assure the complete similitude. A similar concept was
also applied to the dynamic analysis of rectangular plates under a moving load line [8]. Both complete and
partial similitude cases were presented. An agreement between the theoretical vibration response of the full-
scale prototype and the prediction from the solution of the scale model was obtained. Wu et al. [9] employed
the similitude concept with a more complex structure where a scale model and the scaling law were utilized to
determine the vibration characteristics of a full-size crane structure.

In past studies, the scaling laws were usually verified using analytical or numerical solutions. An exact
agreement between the scaled solutions and theoretical solutions is always achieved for complete similitude
cases. This so-called numerical experiment demonstrates that the derived scaling laws are accurate
theoretically. However, its accuracy is not necessarily guaranteed when it is applied to practical engineering
problems. In the present study, the scaling law for the vibration response of thin isotropic plates was therefore
verified using experimental results of the model and prototype systems. The scaling law for the natural
frequency of rectangular aluminum plates was derived and used to predict the natural frequency of the
prototype system utilizing the experimental results of the model system. The accuracy of the scaling law was
determined by comparing the scaled natural frequencies with the measured ones. The limitations of employing
the scaling law for the vibration of thin plate problems are given along with some precautions in setting up the
experiment on the model system.

2. Natural frequency of rectangular plates

The classical differential governing equation for the vibration of isotropic rectangular thin plates can be
written as [10]

q4W ðx; y; tÞ

qx4
þ 2

q4W ðx; y; tÞ
qx2qy2

þ
q4W ðx; y; tÞ

qy4
þ

r
D

q2W ðx; y; tÞ
qt2

¼ 0, (1)

where W is the displacement in the out-of-plane direction, r is the mass density per unit area of the specimen,
and D is the flexural rigidity of the plate. Assuming that the out-of-plane displacement is separable as a
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function of position and time, i.e. W ðx; y; tÞ ¼ wðx; yÞTðtÞ, the governing equation is reduced to

q4w
qx4
þ 2

q4w
qx2qy2

þ
q4w
qy4
�

o2r
D

w ¼ 0, (2)

where w is function of x and y only and o is the natural frequency of the vibration.
With given boundary conditions, the vibration governing equation, Eq. (2), can be solved using either an

analytical or numerical method. For simple-supported plates, the analytical closed-form solution is possible by
assuming the out-of-plane displacement of the vibrated plate in the form of

wðx; yÞ ¼ wmn sin
mpx

a
sin

npy

b
, (3)

where a and b are the dimensions of plate in the x and y directions, respectively. By substituting the assumed
displacement function w(x,y) into the governing equation, the natural frequency of the plate is obtained and
written as

omn ¼
p
2a2

ffiffiffiffi
D

r

s
m2 þ

a2

b2
n2

� �
, (4)

where omn are the natural frequencies of the plate in Hz, m and n are positive integers. It should be noted that,
for plates with other boundary conditions, the natural frequencies are not available in the form of exact
analytical expression. The numerical or finite element methods are required for specimens with clamped or free
boundary conditions.

3. Scaling law for the vibration of plate

Although the natural frequencies of thin plates with combinations of simple support, clamped support or
free boundary conditions are available, they may not be practically appropriate for engineering structures
where accurate natural frequencies are required. The boundary conditions of practical structures are usually
non-classical ones such as elastically restrained or imperfect boundary conditions, which are not easily
modeled because the level of restraining is unknown. This is where the scaling law can be utilized to determine
the vibration behavior of the structure or prototype of interest using the experimental results of the scaled
model. The scaled model is either a scaled-down or scaled-up test specimen having complete similarity with the
real structure. Although the boundary conditions of the prototype are not exactly known, they can be modeled
in the scaled model using similar supports. Thus, the experimental results from the corresponding test
specimen along with the scaling law can be used to predict the vibration behavior of the prototype. The
derivation of the scaling law for vibration behavior is briefly derived in this section.

The scaling law for the vibration of rectangular isotropic plates is derived from the governing equation,
Eq. (2), by comparing the governing equations of the model with that of the prototype. From both equations,
the similitude invariant term, which leads to the scaling law, is obtained. Let the variables of the prototype and
their corresponding model variables be related to each other as follows:

xp ¼ Cxxm; yp ¼ Cyym; wp ¼ Cwwm; Dp ¼ CDDm,

op ¼ Coom; and rp ¼ Crrm,

where subscripted p refers to the prototype system and subscripted m refers to the model system, and Ci are the
scaling factors of the i parameters. To derive the similitude invariant, the governing equations of the model
and prototype are written as the following:

q4wm

qx4
m

þ 2
q4wm

qx2
mqy2

m

þ
q4wm

qy4
m

�
o2

mrm

Dm

wm ¼ 0, (5)
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It should be noted that Eq. (6) can be written in the same form as Eq. (5) with subscript ‘‘p’’ instead of
subscript ‘‘m.’’ However, the scaling factors are utilized so that the governing equations of both systems can
be compared and simplified. Comparing both equations, the vibration behavior of the model and of the
prototype are similar if groups of the scaling factors in Eq. (6) are all equal. This implies that Eq. (6) can be
reduced to Eq. (5) when the scaling factor groups are canceled out. Thus, the similitude requirement is
obtained as

1

C4
x

¼
1

C2
xC2

y

¼
1

C4
y

¼
C2

oCr

CD

. (7)

By assuming that the model and prototype have a geometric similarity (Cx ¼ Cy ¼ Ca ¼ Cb), the similarity
requirement is simplified to

C2
oCrC4

b

CD

¼ 1. (8)

Eq. (8) is the similitude invariant of the vibration behavior of rectangular plates. This invariant can be
reduced to the scaling law of plate natural frequency as

o2
p ¼ o2

mCD

b4
mrm

b4
prp

. (9)

This scaling law relates the natural frequencies of the model to that of the corresponding prototype. The
derived scaling law is valid for a model–prototype pair with complete geometric similarity, i.e. Ca ¼ Cb or both
systems having the same aspect ratio. The scaling law can be verified with the theoretical solution shown in the
previous section. As shown in Table 1, rectangular aluminum plates with b ¼ 250mm and an aspect ratio, a/b,
of 1–3.5 are selected as models and used to predict the natural frequencies of the stainless steel prototypes with
a width b of 200 and 300mm, respectively. The model plates are assumed to be Al6061-T6 with E ¼ 68.9GPa,
v ¼ 0.35, density ¼ 2.71� 103 kg/m3, and plate thickness h ¼ 2mm, while the prototypes are stainless steel
with E ¼ 193GPa, v ¼ 0.27, density ¼ 7.86� 103 kg/m3, and plate thickness h ¼ 2mm. The fundamental
natural frequencies of the models determined from the analytical solution, Eq. (4), are shown in column 2.
These natural frequencies are substituted into the scaling law to predict the scaling natural frequencies of the
prototypes, as presented in the ‘‘oScaling’’ columns. The scaling frequencies are verified by the theoretical
solutions shown in column 3 and 5. The data confirms that the natural frequencies determined from the
scaling law and those from the closed-form solutions are identical.

Therefore, the scaling law for the natural frequency of rectangular plate is verified, theoretically. The
derived scaling law is applicable to a model and prototype pair with the same aspect ratio, although they are
made of different materials. However, it is not assured that the scaling law will be accurate in real applications.
The objective of the present study was therefore to validate the scaling law with the experiment results. Thus,
vibration experiment was performed to determine the natural frequencies of the model and prototype
Table 1

The fundamental natural frequencies in Hz for Al6061-T6 specimens

Aspect ratio (a/b) Aluminum model

b ¼ 250mm

Stainless steel prototype

b ¼ 200mm b ¼ 300mm

oTheory oScaling oTheory oScaling

1.0 156.2 233.4 233.3 103.7 103.7

1.5 112.8 168.5 168.5 74.9 74.9

2.0 97.6 145.9 145.8 64.8 64.8

2.5 90.6 135.4 135.4 60.2 60.2

3.0 86.8 129.6 129.6 57.6 57.6

3.5 84.5 126.2 126.2 56.1 56.1
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specimens. The measured natural frequencies of the models were then substituted into the scaling law to
predict the natural frequencies of the prototypes. Subsequently, the scaling frequencies of the prototype were
compared with the measured ones to determine the accuracy of the derived scaling law.

4. Experimental setup

Several samples of thin rectangular plates were tested to determine their first three natural frequencies. The
specimens were composed of aluminum, structural steel and stainless steel rectangular thin plates. The
boundary conditions of the test panels were a combination of the knife-edge support and free boundary
conditions. The knife-edge support was employed to simulate the theoretically simple-supported boundary
condition. Schematic drawings of the specimens’ dimensions and boundary conditions are shown in Fig. 1.
The boundary of specimen supported by the knife-edge constraint is designated as ‘‘S,’’ while the free
supported edge is represented by ‘‘F.’’ The boundary conditions of the specimens used in this study were SSSS,
SFSS, SFSF, and SSFF, as shown in the figure. The first and second letters represent the boundary condition
on the y ¼ 0 and b edges, respectively. Similarly, the last two letters symbolize the boundary conditions on the
other edges. The specimens were mounted in the test setup and equipped with an impact hammer and an
accelerometer as shown in Fig. 2. The knife-edge support replicating the simply supported boundary condition
was enforced by two stainless steel bars coupled on the specimen. The steel bars were machined in an inclined
direction to form a knife-edge. With this support, the specimens were intentionally allowed to freely rotate but
any out-of-plane displacement was restrained. The knife-edge supports were fixed with steel boxes with a
number of machine screws. Additional machine screws were also used to push the knife-edge supports against
the specimen surface. The assembly of steel boxes and knife-edge supports was also tested for natural
frequency to confirm that their natural frequencies were not in the range of those of the specimens.

The vibration test for natural frequency was performed using an impact test [11,12]. Briefly, the specimens
were excited by an impact hammer while the applied impulse was monitored by a dynamic signal analyzer. An
accelerometer was placed on the specimen at a selected location to measure the plate response in terms of
acceleration. It is recommended that the accelerometer should not be set on the node line of the vibration to
avoid a low response signal. If the node line is unknown or uncertain, more than one measurement is
recommended. In the present study, several pretests were conducted to determine a suitable location of the
accelerometer. Besides the applied impulse from the impact hammer, the acceleration responses from the
accelerometer were collected by a dynamic signal analyzer. The accelerations were recorded five times from
five excitations of the impact hammer. These five sets of the acceleration data measured in the time domain
were processed by a fast Fourier transform (FFT) algorithm using the dynamic signal analyzer to obtain the
response in the frequency domain. From the vibration response in the frequency domain, the natural
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Fig. 1. Schematic drawings of the rectangular test specimens.
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Fig. 2. Experimental setup with accelerometer and impact hammer.
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frequencies of the specimen were identified from the peak of the response. Theoretically, there are infinite
numbers of natural frequency; however, only the first three modes are of interest in this study. Fig. 3 shows
examples of the vibration response measured in the frequency domain obtained from the dynamic signal
analyzer for a 300� 300mm2 aluminum plate with various boundary conditions. The measured natural
frequencies in Hz for the first three modes of the specimen with SSSS boundary conditions are 149.0, 293.5,
and 322.5Hz, respectively. A response similar to those of shown in Fig. 3 can be obtained from experiments
with excitation and accelerometer located at various positions. Ideally, the measured natural frequencies are
independent of the location of either excitation or accelerometer. From the experiments, varying the position
of excitation and the location of the response measurement has a minimal effect on the measured natural
frequencies. In this study, a minimum of 5 experiments were performed for each specimen and the
experimental natural frequency was determined from the average of each measurement.

5. Experimental results

Two sets of the experiment were conducted in this study to determine the accuracy of the scaling law
using experimental measurements in two cases, i.e. (a) aluminum model and prototype of different sizes and
(b) equal-size model–prototype pairs composed of different materials. The former part of the study was
designed to investigate the size effect, while the material effect was studied in the latter part. To examine the
size effect, the test specimens were nine aluminum plates with aspect ratios (a/b) of 1, 1.5, and 2 and a
specimen nominal width b of 200, 250, and 300mm, respectively. The natural frequencies of all the specimens
with four combinations of boundary conditions were experimentally determined and used to validate the
scaling law. The other set of experiments involved tests on four groups of specimens, i.e. two groups of
aluminum, a group of structural steel and a group of stainless steel. The dimensions of the specimens in this set
of experiments were 300� 200mm2 and 375� 250mm2.

5.1. Size effect

For the first part of the experiment, the measured natural frequencies for the SSSS aluminum plates with
nine different dimensions are presented in Table 2. In the table, the test specimens are classified into three
groups: rectangular plates with aspect ratios of 1, 1.5, and 2. The experimental data showed that the natural
frequencies decreased with plate size. Similar experimental results were obtained for aluminum specimens with
other boundary conditions but are not presented here. The specimens shown in Table 2 were assumed to be a
model or a prototype and used to validate the scaling law, as shown in Table 3. From the three specimens with
an aspect ratio of 1, three pairs of models and prototypes were assigned to the test specimens. As shown in
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Fig. 3. Vibration response in frequency domain of 300� 300mm2 aluminum plate.
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Table 2

Measured natural frequencies of the SSSS aluminum specimens

Aspect ratio Specimen size, a� b

(mm2)

Natural frequency (Hz)

1st mode 2nd mode 3rd mode

1 200� 200 309.8 676.9 729.6

250� 250 196.7 409.0 444.6

300� 300 148.8 293.2 321.8

1.5 300� 200 221.2 376.3 580.7

375� 250 150.5 255.4 376.6

450� 300 99.6 171.4 257.4

2 400� 200 199.6 256.2 425.2

500� 250 132.4 173.6 275.5

600� 300 90.1 117.8 193.4

Table 3

The measured and scaling natural frequencies for the SSSS aluminum specimens

Aspect ratio Model Prototype Mode Model Prototype

oExp oScaling %Dis

1 200� 200 300� 300 1 309.8 148.8 137.7 �7.47

2 676.9 293.2 300.8 2.61

3 729.6 321.8 324.3 0.77

250� 250 200� 200 1 196.7 309.8 307.3 �0.79

2 409.0 676.9 639.1 �5.59

3 444.6 729.6 694.7 �4.79

300� 300 250� 250 1 148.8 196.7 214.3 8.93

2 293.2 409.0 422.2 3.23

3 321.8 444.6 463.4 4.23

1.5 300� 200 450� 300 1 221.2 99.6 98.3 �1.29

2 376.3 171.4 167.2 �2.42

3 580.7 257.4 258.1 0.27

375� 250 300� 200 1 150.5 221.2 235.2 6.31

2 255.4 376.3 399.1 6.05

3 376.6 580.7 588.4 1.33

450� 300 375� 250 1 99.6 150.5 143.4 �4.70

2 171.4 255.4 246.8 �3.36

3 257.4 376.6 370.7 �1.58

2 400� 200 600� 300 1 199.6 90.1 88.7 �1.54

2 256.2 117.8 113.9 �3.34

3 425.2 193.4 189.0 �2.29

500� 250 400� 200 1 132.4 199.6 206.9 3.64

2 173.6 256.2 271.3 5.87

3 275.5 425.2 430.5 1.24

600� 300 500� 250 1 90.1 132.4 129.7 �2.01

2 117.8 173.6 169.6 �2.29

3 193.4 275.5 278.5 1.09

P. Singhatanadgid, A. Na Songkhla / Journal of Sound and Vibration 311 (2008) 314–327 321
column 2 and 3 of Table 3, a 200� 200mm2 specimen was set as a model and used to model the 300� 300mm2

prototype specimen. The other two model–prototype pairs were a 250� 250mm2 model with 200� 200mm2

prototype and a 300� 300mm2 model with 250� 250mm2 prototype. Specimens with aspect ratios of 1.5 and
2 were also assigned as models or prototypes in the same approach. In Table 3, columns 5 and 6 are the
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measured natural frequencies of the model and prototype, respectively. The next column labeled as ‘‘oScaling’’
presents the scaling natural frequencies of the prototypes. These scaling natural frequencies were determined
from the scaling law shown in Eq. (9) using the measured natural frequencies of the model in column 5. The
experimental and scaling natural frequencies shown in columns 6 and 7, respectively, were compared with each
other. The percentage discrepancy of the scaling natural frequency shown in the last column was determined
according to

%Dis ¼
oScaling � oExp

oExp
� 100%. (10)

Most of the comparisons show a good agreement between the scaling and measured natural frequency. The
average of the absolute values of percentage discrepancy for experiment on all 27 model–prototype pairs is
3.30% with a standard deviation of 4.05%. The minimum and maximum percentage discrepancies are
�7.47% and +8.93%, respectively, while more than half of the comparisons have a percentage discrepancy
within 73%. There was no significant difference in percentage discrepancy for each vibration mode or plate
aspect ratio. The causes of discrepancy between the scaling and measured natural frequencies are probably
related to the imperfections of the boundary conditions and specimens. As described in the previous section,
knife-edge supports of the test setup were controlled by several machine screws. In the experiments, the
machine screws were tightened until the gaps between the specimen and support were invisible. Although it
was desired to obtain identical boundary conditions for the model and its prototype, it was expected that the
boundary conditions for each experiment would not be perfectly identical. Besides the imperfect boundary
conditions, imperfections of specimens such as non-uniform thickness and the existence of plate curvature
might be the cause of discrepancy between the scaling and measured behaviors. These two causes of error are
classified as an experimental uncertainty, which is typical in experimental study and is very difficult to
completely eliminate.

Another three comparable studies were performed on the same test specimens with boundary conditions of
SFSS, SFSF, and SSFF. An inconsistency between the scaling and measured natural frequencies of all
comparisons in terms of percentage discrepancy is shown in Table 4. The last two rows of the table show the
average of absolute values of percentage discrepancy and the standard deviation of the percentage
discrepancy, respectively. The overall average and standard deviations of the percentage discrepancy were
4.90% and 6.46%, respectively. The histogram in Fig. 4 represents the frequency distribution of the
percentage discrepancy, which revealed that the distribution of the percentage discrepancy closely resembles a
normal distribution and the percentage discrepancies of 95 from 108 comparisons were in the range of 710%.
However, percentage errors for some pairs of model and prototype were slightly higher, especially for the
experiments on the SFSF specimens. Eight values of percentage discrepancy from the experiments on this
Table 4

Percentage discrepancy between scaling and measured natural frequencies

Aspect

ratio

Model Prototype SSSS SFSS SFSF SSFF

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3

1 200� 200 300� 300 �7.47 2.61 0.77 �0.86 3.75 0.06 �5.56 �2.12 �4.52 3.55 2.80 2.05

250� 250 200� 200 �0.79 �5.59 �4.79 2.91 �2.62 2.19 1.37 0.45 �0.58 0.89 �4.90 �0.19

300� 300 250� 250 8.93 3.23 4.23 �1.98 �1.03 �2.20 4.46 1.72 5.35 �4.28 2.30 �1.83

1.5 300� 200 450� 300 �1.29 �2.42 0.27 7.26 2.83 6.84 �17.74 �10.07 �10.96 �9.00 �15.54 �0.86

375� 250 300� 200 6.31 6.05 1.33 �11.91 �8.50 �5.50 13.41 6.00 5.41 7.06 5.42 3.15

450� 300 375� 250 �4.70 �3.36 �1.58 5.84 6.28 �0.95 7.19 4.90 6.54 2.64 12.31 �2.21

2 400� 200 600� 300 �1.54 �3.34 �2.29 3.94 2.75 2.57 �11.22 �14.29 �9.69 �6.24 �12.66 �6.07

500� 250 400� 200 3.64 5.87 1.24 2.06 1.00 �0.46 �6.78 �1.55 2.48 �3.51 8.36 5.92

600� 300 500� 250 �2.01 �2.29 1.09 �5.73 �3.64 �2.06 20.84 18.51 8.06 10.54 5.67 0.52

Average 3.30 3.62 7.47 5.20

Standard deviation 4.05 4.63 9.46 6.64
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boundary condition resulted in a percentage discrepancy higher than 710%, compared with only four values
and one value for SSFF and SFSS cases, respectively. The average of the absolute percentage discrepancy for
SFSF specimens was 7.47%, which is higher than those of other boundary conditions. The higher percentage
discrepancy of the scaling law observed in specimens with SFSF boundary conditions was probably caused by
the particular characteristics of these boundary conditions. For SFSF specimens, the free boundary condition
was imposed on two adjacent edges of the plate, i.e. two adjacent edges were free to move, as shown in Fig. 1.
As a result, the specimen with this combination of boundary conditions tended to be slightly curved at the free
corner because of its own weight. The degree of non-flatness of the test specimens was probably different for
specimens with different dimensions, that is, the size effect had an influence on the accuracy of the scaling law
in this case. So, the model and prototype with these boundary conditions did not have a complete similarity,
resulting in a slightly higher percentage discrepancy for these specific boundary conditions.

Therefore, from the experimental study in the first part, the scaling law provided reasonable accuracy for
modeling a prototype using a model with different dimensions. Uncertainties of the experiments in boundary
condition and thickness are believed to be the sources of the discrepancy. To obtain a decent prediction from
the scaling law, the experiment on the model specimen should be carefully performed to assure near-complete,
if not perfectly complete, similarity with the prototype. The specimen size might slightly affect the precision of
the scaling law in case of SFSF specimens because the flatness of the model and prototype cannot be
maintained.

5.2. Material effect

The second part of the study was to determine the applicability of using a model with one type of material to
predict the vibration behavior of the prototype made from another type of material. Four types of specimen
including two types of aluminum specimen; called herein Aluminum-A and Aluminum-B, and the other two
groups of steel and stainless steel specimens were tested. All specimens are commercially available in form of
sheet metal. They were prepared and machined to the nominal dimensions of 300� 200mm2 and
375� 250mm2. The physical and mechanical properties of all the materials were experimentally determined
and are presented in Table 5. It should be noted that the mechanical properties of Aluminum-A and
Aluminum-B are more or less comparable and so are the properties of steel and stainless steel. Therefore, a
total of eight thin plates were tested in this part of the study. Since material effect was investigated in this
study, only specimens of the same size were assigned as a model–prototype pair. All specimens with four
different boundary conditions were tested for the first three natural frequencies. The test results were then
assigned as experimental natural frequencies of the model or the prototype. The accuracy of the scaling law
was determined by comparing the scaling and experimental natural frequencies in the same manner as the
previous study. Lists of the percentage discrepancies between both natural frequencies are shown in Table 6.
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Table 6

Percentage discrepancies between scaling and measured natural frequencies demonstrating the material effect

Model Prototype Specimen size,

a� b (mm2)

SSSS SFSS SFSF SSFF Avg.

Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3 Mode1 Mode2 Mode3

Al-A Al-B 300� 200 �11.61 �4.67 �5.15 14.40 6.51 6.67 �11.72 6.12 �1.85 4.55 1.51 5.36 6.68

375� 250 �12.39 �1.71 �3.65 3.74 �4.28 �2.67 �8.44 �7.61 5.06 0.62 2.82 -1.77 4.56

Steel 300� 200 19.58 16.51 19.94 36.13 23.16 25.86 12.02 7.30 12.12 24.56 14.97 19.69 19.32

375� 250 26.84 27.68 18.63 21.57 14.04 18.60 19.94 7.45 16.24 33.47 20.87 23.96 20.77

Stainless steel 300� 200 22.11 23.80 22.48 34.08 27.18 29.63 12.37 11.87 19.42 33.50 22.67 29.91 24.09

375� 250 27.03 32.71 24.02 23.71 20.23 22.16 17.06 13.24 24.82 34.32 28.02 21.06 24.03

Al-B Steel 300� 200 35.29 22.22 26.45 18.99 15.63 17.99 26.89 1.12 14.23 19.14 13.26 13.61 18.74

375� 250 44.77 29.90 23.13 17.19 19.14 21.85 30.99 16.30 10.64 32.65 17.55 26.20 24.19

Stainless steel 300� 200 38.15 29.87 29.13 17.20 19.41 21.52 27.28 5.42 21.67 27.69 20.84 23.30 23.46

375� 250 44.99 35.01 28.72 19.25 25.61 25.51 27.85 22.56 18.81 33.49 24.51 23.24 27.46

Steel Stainless steel 300� 200 2.11 6.26 2.12 �1.51 3.26 2.99 0.31 4.26 6.51 7.18 6.69 8.53 4.31

375� 250 0.15 3.94 4.54 1.76 5.43 3.00 �2.40 5.39 7.38 0.64 5.92 �2.34 3.57

Table 5

Properties of materials used in the second part of the experiments

Material Thickness (mm) Mass density per area

(kg/m2)

Modulus of elasticity

(GPa)

Poisson ratio

Aluminum-A 1.81 5.10 62.3 0.316

Aluminum-B 1.42 3.63 58.0 0.320

Steel 1.95 15.29 197.0 0.346

Stainless steel 1.48 11.23 200.0 0.327
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The first two columns of the table are materials of the model and prototype, respectively, with the specimen
dimensions shown in column 3. The next twelve columns indicate the percentage discrepancies between the
scaling and measured natural frequencies. The last column shows the averages of absolute percentage
discrepancy for each pair of model and prototype. Clearly, the degree of discrepancy was separated into two
groups; the lower one and the higher one. The scaling natural frequencies were well correlated with the
measured ones for model–prototype pairs with the same type of material, i.e. a pair of Aluminum-A and
Aluminum-B or a pair of steel and stainless steel. The averages of absolute percentage discrepancy for these
model–prototype pairs were in the range of 3.57–6.68%. On the contrary, the scaling natural frequencies did
not match the corresponding experimental results well for a pair of model and prototype with different types
of material, for example, the Aluminum-A model and steel prototype or the Aluminum-B model and stainless
steel prototype. The average percentage discrepancies varied from 18.74% to 27.46%. These fairly high
percentage discrepancies are contradictory to the theoretical validation of the scaling law, shown in Table 1. It
is proved that the scaling law is theoretically precise although both model and prototype are composed of
different materials. These high percentage discrepancies can be explained by considering the boundary
conditions provided by the experimental setup. Although aluminum or steel plates were restrained by the same
knife-edge supports, they were probably not subjected to similar boundary conditions because of the
difference between the stiffness of the knife-edge supports and the stiffness of the test specimens. The knife-
edge supports which were used to simulate the simply supported boundary condition were made of stainless
steel with an elastic modulus of about 200GPa. Because of the comparable stiffness, when steel or stainless
steel specimens were mounted on the knife-edge support, an approximate simple support was achieved,
supposedly. On the other hand, it would seem that a near-clamped support was obtained for the experiments
of the aluminum plates due to the mismatch in stiffness between the specimen and the support. This hypothesis
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can be tested by comparing the experimental results of the SSSS specimens with the theoretical solutions, as
shown in Fig. 5. The experimental natural frequencies of all eight specimens with knife-edge supports on all
edges, i.e. SSSS specimens, were plotted and compared with the theoretical solutions. In the figure, the
experimental natural frequencies of the first three vibration modes of both 300� 200mm2 and 375� 250mm2

specimens with different materials are shown, labeled as ‘‘Exp’’. The theoretical natural frequencies of the
specimens with all edges simple supported and all edges clamped were also plotted, labeled as ‘‘Theory
(SSSS)’’ and ‘‘Theory (CCCC),’’ respectively. Obviously, all of the experimental natural frequencies of the
aluminum specimens (both Aluminum-A and Aluminum-B) were close to the theoretical solutions of the
CCCC specimens. In contrast, the experimental results of the steel and stainless steel specimens closely
approximated to the theoretical solutions of the SSSS specimens. Because of the greater stiffness of the
support, the aluminum specimens were probably not allowed to rotate as much as the steel specimens were,
although they were constrained by the same supports. Therefore, the boundary condition provided by the
experimental setup, which was supposed to be simple support, was a fairly clamped boundary condition for
the aluminum specimens. For the steel specimens, the near simply supported boundary condition was
successfully obtained as intended. That is, the very same knife-edge support provided quite different boundary
conditions for the aluminum and steel specimens because the kinetic conditions of both types of material were
different. The high percentage discrepancy in this case was not caused by experimental uncertainty as of those
in Section 5.1, but was the result of the dissimilar boundary conditions which violated the similarity
requirements. It is concluded that, in practice, the type of material of the model indirectly affects the accuracy
of the scaling law because specimens with different types of material may be supported differently by the same
support.

To confirm that the derived scaling law is applicable for a model and prototype composed of different
materials if their boundary conditions are sufficiently comparable, an additional set of experiments was
performed. The supplementary tests were similar to the experiments shown in Table 6 but boundary
conditions for the specimens were free boundary condition on all edges (FFFF). The specimens used in the
experiment included all four groups of materials with plate dimensions of 300� 200mm2 and 375� 250mm2.
The FFFF boundary condition was set up by hanging the test specimen using a small rope. With this test
setup, the specimens were allowed to freely vibrate in an out-of-plane direction when excited by the impact
hammer. The first three natural frequencies were experimentally determined and assigned as a model or a
prototype similar to the study shown in Table 6. The percentage discrepancies between the scaling and
measuring natural frequencies for the experiment with FFFF boundary conditions are presented in Table 7.
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Fig. 5. Experimental and theoretical natural frequencies of the SSSS specimens.
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Table 7

Percentage discrepancies between scaling and measured natural frequencies of FFFF specimens

Model Prototype Specimen size,

a� b (mm2)

FFFF Avg.

Mode1 Mode2 Mode3

Al-A Al-B 300� 200 10.47 �2.39 9.59 7.48

375� 250 14.15 3.53 7.11 8.26

Steel 300� 200 2.86 9.71 4.06 5.54

375� 250 5.71 �3.17 �7.84 5.57

Stainless steel 300� 200 2.28 6.98 9.13 6.13

375� 250 14.66 1.15 �1.53 5.78

Al-B Steel 300� 200 �6.89 12.39 �5.05 8.11

375� 250 �7.40 �6.47 �13.95 9.27

Stainless steel 300� 200 �7.42 9.59 �0.42 5.81

375� 250 0.45 �2.30 �8.06 3.60

Steel Stainless steel 300� 200 �0.57 �2.49 4.87 2.64

375� 250 8.47 4.46 6.84 6.59
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The scaling law was able to predict the natural frequency of the prototype fairly well. From 36 comparisons,
only 5 model–prototype pairs had a percentage error higher than 710%. The averages of absolute percentage
discrepancy for each pair of model and prototype ranged from 2.64% to 9.27%. Unlike the experiments
shown in Table 6, there is no significant difference in percentage error between specimens of the same and
different types of materials. Experimental results from either aluminum or steel models were able to predict the
behavior of the prototypes with comparable accuracy. A good prediction by scaling law is achieved in the
experiment with FFFF boundary conditions because of the similarity of the boundary conditions of the model
and prototype. Without a support, it is assured that the boundary conditions of the model and prototype are
similar, geometrically and kinetically. Thus, the scaling law is applicable for a model and prototype composed
of different materials if the boundary conditions of both systems have sufficient similarity. The boundary
conditions of two systems are said to be identical if they have geometric and kinetic similarities. The same set
of supports may not provide identical boundary conditions for each specimen because of the mismatch of
material properties between specimen and support causing kinetic dissimilarity.

6. Conclusions

This study derives the scaling law and similitude requirements for vibration response of rectangular thin
plates. The scaling law was theoretically verified and found to be exact for a pair of models and prototypes
with complete similarities. To determine the accuracy of the scaling law in practice, an experimental setup was
prepared to accommodate the vibration experiment. The specimen was excited by an impact hammer and
measured for vibration response using an accelerometer. The natural frequencies could be identified from the
peaks of the response in the frequency domain. In the first part of the experiment, the scaling law was applied
to a pair of models and prototypes with the same material. From 108 comparisons, the average percentage
error between the scaling and experimental natural frequencies was 4.90%. This fairly low percentage
discrepancy confirms that scaling law is accurate and practical in engineering applications. The experimental
uncertainty in term of imperfect boundary conditions and specimens is probably the cause of this slight
discrepancy. However, it is noticed that the scaling natural frequency for some cases of SFSF plates did not
correspond well with the measured data. The sources of this error were not only caused by the experiment
uncertainty but also caused by the fairly high degree of dissimilarity between the model and prototype
specimens, i.e. curvature of the test specimens due to two adjacent edges having no support. For specimens
with a combination of these particular boundary conditions, the size effect influenced the accuracy of the
scaling law because of the dissimilarity in plate configuration of the model and prototype. In the second part
of the study, natural frequencies of the prototypes were predicted using model specimens of different
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materials. The data shows that the scaling natural frequencies were not very well matched to the experimental
ones if the model and prototype were composed of different types of materials. In comparison with the
theoretical solutions, it is believed that the boundary conditions of the model and prototype are different,
resulting in a very high percentage discrepancy of the scaling natural frequency. This suggests that boundary
conditions on the test specimens are not only dependent on the geometry of the support but also on the kinetic
conditions of the support. Additional experiments were performed on specimens made of different materials
using FFFF boundary condition to validate the scaling law for model and prototype with identical boundary
conditions and composed of different materials. Without a support, the boundary conditions of the model and
prototype are identical, thus, the accuracy of the scaling law is achieved as expected.

In conclusion, the derived scaling law is practical to employ in engineering applications. From this study,
the discrepancy of the scaling solutions might develop from the uncertainty of the experiment, curvature of the
specimens due to two adjacent free edges, and dissimilar boundary conditions due to a mismatch in the
material properties of the specimen and support. Errors from the uncertainty of the experiment are fewer than
those from other sources and can be kept minimal by carefully setting up the experimental conditions on the
model to match those of the prototype. This type of error is typical in the experimental investigation and
impossible to completely eliminate in practice. Errors from the latter two sources, on the other hand, are the
result of the incomplete similarity conditions between the model and prototype. These causes of error could be
eliminated by ensuring that the plate configurations and boundary conditions of both systems are completely
identical. To utilize the scaling law, precautions should be taken for a specimen with some particular
combinations of boundary conditions where plate configurations might be effected by the size of the test
specimen. Moreover, without a procedure to obtain a complete similarity of boundary conditions of the model
and prototype with different materials, it is strongly recommended that the model is prepared from the same
material as the prototype. It is also worthwhile to further study the possibility of overcoming the difficulties in
utilizing the support on different materials as well as the chance of deriving a scaling law for a
model–prototype pair with different boundary conditions.
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